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AbstractÐWhere a shear zone is bounded by undeformed wall rocks and there is no volume change, the defor-
mation path within the zone on the bulk scale approximates a simple shear. Where the zone boundaries are
stretched and the shear direction between the two boundaries is parallel to one of the principal stretching
directions of the boundaries, the deformation path within the zone is not a simple shear but still has monocli-
nic symmetry. Both simple shear and general monoclinic deformation paths should be regarded as special
cases in nature, because generally not only are the zone boundaries stretched but also the shear is oblique to
the principal stretching directions of the boundaries. In this general case, the deformation path is triclinic. We
establish a model which includes this general case also taking into consideration volume change.

Five independent parameters are required to characterize the rate of deformation of the ¯ow; four are su�-
cient to characterize the ¯ow kinematics. The model is generally triclinic, and orthorhombic and monoclinic
deformations are subgroups. By varying the values of the characterizing parameters, the various types of high-
strain zones can be represented. The kinematics of ¯ow within such zones and the accumulated ®nite defor-
mation geometry are investigated. Many ®eld observations such as, for example, lineations in transcurrent
shear zones that vary between vertical and horizontal, cleavage transected folds, and the absence of sheath
folds in some shear zones where folds have been signi®cantly rotated, can sometimes be better interpreted in
the context of our general model. # 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

Localization of strain into high-strain zones is a com-
mon feature of natural deformation. In early plane-
strain models, these zones were called shear zones
(Ramsay and Graham, 1970; Ramsay, 1980) or ductile
deformation zones (Mitra, 1978). Sanderson and
Marchini (1984) used the term transpression (transten-
sion) to refer to their three-dimensional model.
Subsequent authors (see below) adopt this term when
they revise or expand the model of Sanderson and
Marchini (1984). However, as pointed out by Robin
and Cruden (1994), the term transpression has a dual
meaning of both tectonic environment (Harland, 1971)
and deformation path which must be clearly distin-
guished in the study of natural deformation (Lister
and Williams, 1979; Williams and Schoneveld, 1981;
Celma, 1982; Platt and Behrmann, 1986; Robin and
Cruden, 1994; Jiang, 1994a; Jiang and White, 1995).
Because of this and because this paper deals with a
general model in which existing models become special
cases, the term `high-strain zone' is used to refer to all
natural zones of strain concentration.

Ramsay and Graham (1970) and Ramsay (1980),
following a ®nite deformation approach, demonstrated
that the deformation path within a zone of constant
volume, bounded by undeformed wall rocks, approxi-
mates a simple shear on the bulk scale. Ramberg
(1975) presented an elegant analysis of all two-dimen-
sional, isochoric, homogeneous, steady deformations in
terms of rate of deformation. Ramberg's work is now
classic and the method can be extended to three-

dimensional deformations. By considering the velocity
®eld as a function of time and position, the method
can also deal with heterogeneous and non-steady de-
formations. Following a ®nite deformation approach,
Sanderson and Marchini (1984) proposed the ®rst
three-dimensional model for high-strain zones which
they called transpressional zones. Other models have
been published in many papers including Jones and
Tanner (1995), Krantz (1995) and Teyssier et al.
(1995). Fossen and Tiko� (1993) and Tiko� and
Teyssier (1994) formulated Sanderson and Marchini's
model in terms of rate of deformation following
Ramberg's approach. Robin and Cruden (1994) inves-
tigated the ¯ow geometry of an extrusional high-strain
zone model where the boundary-normal component of
the relative velocity of the zone is accommodated in
the same volume of rock as the boundary-parallel
component of the relative velocity. The ®nite strain
geometry of this model has been investigated by
Dutton (1997). Jones et al. (1997) extend the
Sanderson and Marchini (1984) model to include all
three-dimensional monoclinic and constant-volume de-
formations.

A simple shear path is monoclinic. The deformation
path in a high-strain zone with stretching boundaries
and with shear direction (boundary-parallel component
of the relative velocity of a high-strain zone, see
below) parallel to one of the principal stretching direc-
tions of the boundaries is also monoclinic. It is
obvious that such monoclinic situations are special
cases. Once the shear direction is oblique to the
principal stretching directions of the boundaries, the
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high-strain zone becomes triclinic (Robin and Cruden,
1994; Lin et al., 1998). As will be discussed later in the
paper, such boundary conditions are very common in
nature from the scale of plate boundaries to a single
deformation zone. Natural high-strain zones that can-
not be properly interpreted in terms of a monoclinic
deformation path are reported for example from the
Canadian Appalachians (e.g. Caron and Williams,
1988; Lin, 1992; Goodwin and Williams, 1996; Lin et
al., 1998) and Sveconorwegian orogenic province of
southwest Sweden (Robin and Cruden, 1994).
We present a general model for high-strain zones

expanding the work of Lin et al. (1998) to include
biaxial stretching of the boundaries and volume
change. Monoclinic models are not excluded but form
a subgroup. In fact, by varying the characterizing par-
ameters, the deformation path of our model varies
from coaxial through monoclinic non-coaxial (includ-
ing simple shear) to general triclinic non-coaxial.

CHARACTERIZATION OF FLOW

Figure 1 shows a homogeneous domain of a high-
strain zone. In the most general situation (Fig. 1b), the
¯ow can be characterized by the following ®ve par-
ameters. The boundaries are being biaxially stretched
with two principal stretchings EÇa and EÇ c (vEÇavR vEÇ cv by
de®nition). The stretching normal to the zone bound-
ary is denoted by EÇb. The high-strain zone is said to be
thinning, thickening or of constant-thickness if its two
material boundaries are moving toward each other
(EÇb<0), away from each other (EÇb>0) or maintaining
the same spacing (EÇb=0), respectively. The terms are
chosen to distinguish these zones from the widening
and narrowing zones of Means (1995) where the zone
boundaries migrate through the material. The shearing
(shear strain rate) on the boundary is gÇ ; the shear
direction makes an angle f with the EÇa direction.
These ®ve parameters completely characterize the

¯ow at an instant. In order to relate them to the rela-
tive velocity of a high-strain zone, we use a reference
frame, x1x2x3, ®xed to one boundary, such that x1, x2
and x3 are parallel to EÇa, EÇb and EÇ c, respectively, and
they form a right-hand coordinate system (Fig. 1b).
In such a coordinate system, the relative velocity

vector, v, of the zone (the velocity of one boundary
with respect to the other) can be expressed as:

v � v1i� v2j� v3k; �1�
where i, j and k are unit vectors parallel to x1, x2 and
x3, respectively.
The gradient of the relative velocity across the zone,

i.e. along x2 is:

@v

@x2
� @v1
@x2

i� @v2
@x2

j� @v3
@x2

k � @v==
@x2

e� @v?
@x2

j

� @v

@x2
�sinYe� cosYj�; �2�

where Y is the angle between v and the zone boundary

normal (x2), v// and v_ are, respectively, the boundary-

parallel and boundary-normal components of velocity

(v//=v1i + v3k and v_=v2j), e is the unit vector parallel

to v// and parallel to the shear direction (Fig. 1b).

Using f, we have e = cosf i + sinf k. The magni-

tudes of v// and v_ are, respectively, v//=v sin Y and

v_=v2=v cos Y.

Since @v///@x2 is the shear strain rate (gÇ ), and @v_/@x2
is the stretching parallel to x2, (EÇb), (2) can be rewritten

as:

@v

@x2
� _g�cosfi� sinfk� � _Ebj; �3�

and

_g � @v

@x2
sinY; _Eb � @v

@x2
cosY: �4�

Therefore the ratio of the simple shear component to

the pure shear component of the ¯ow, gÇ /EÇb, can be rep-

resented simply by tan Y.

The model characterized above is general. The de-

formation path ranges from being orthorhombic to

monoclinic to triclinic. Existing models of high-strain

zones become subgroups of this general model:

gÇ=0 (or equivalently Y = 08), coaxial deformation

path (orthorhombic or higher);

Y= 908, gÇ$0 and EÇa=EÇ c=0, Ramsay and Graham

(1970) shear zone, simple shear path (monoclinic);

08< Y < 908, EÇ c=0, EÇa=ÿEÇb>0 and f = 08,
Ramberg (1975) plane-strain sub-simple shear

(Simpson and De Paor, 1993);

08< Y < 908, EÇa=0, EÇ c=ÿEÇb>0 and f = 08,
Sanderson and Marchini (1984) transpression zone

(monoclinic);

f = 08 and EÇa+EÇb+EÇ c=0 (constant volume defor-

mation), Jones et al. (1997) transpression (orthorhom-

bic or monoclinic);

08< Y < 908, EÇa=0, EÇ c=ÿEÇb>0 and 08RfR908,
Lin et al. (1998) transpression (monoclinic and tri-

clinic);

EÇa+EÇb+EÇ c=0 everywhere and the characterizing par-

ameters vary continuously across a high-strain zone

and with depth, Robin and Cruden (1994) model (tri-

clinic or monoclinic).

We wish to emphasize that the above parameters

describe the ¯ow at an instant in a localized body of

rock. In a natural high-strain zone, these parameters

vary with position and time. It is important to dis-

tinguish instantaneous and local properties from bulk

(a high-strain zone as a whole) and ®nite properties

(Lister and Williams, 1979, 1983; Williams and

Schoneveld, 1981; Robin and Cruden, 1994; Jiang,

1994a,b, 1996; Jiang and White, 1995; Goodwin and

Williams, 1996).
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FLOW KINEMATICS IN A HIGH-STRAIN ZONE

The ¯ow within the zone is the sum of the simple
shear component induced by v// and the pure shear
component induced by v_. The velocity gradient ten-
sor, L, in the reference frame shown in Fig. 1, can be
written as (Ramberg, 1975; Lin et al., 1998):

L �
_Ea _g cosf 0
0 _Eb 0
0 _g sinf _Ec

0@ 1A: �5�

L has triclinic symmetry (Fig. 1b) except for the fol-
lowing situations: when gÇ=0, it is orthorhombic
(Fig. 1c); when f = 08, f = 908 or EÇa=EÇ c, it is mono-
clinic (Fig. 1d shows the situation of f = 08).
EÇa=EÇ c=0 is the special case of simple shear. EÇa=EÇ c>0
is a special thinning zone where the boundaries are
stretched at the same rate in all directions.

We wish to point out that six parameters are needed
to characterize the most general triclinic ¯ow
(Passchier, 1997, 1998). We deal with planar high-
strain zone deformation where the vorticity vector is

Fig. 1. A homogeneous domain in a high-strain zone showing the nomenclature used in the text. (a) The initial (unde-
formed) con®guration. (b) The ®nal (deformed) con®guration resulting from a general triclinic non-coaxial deformation
path. The velocity V makes an angle Y with the zone boundary normal. It is resolved into a boundary-normal com-
ponent V_, leading to thinning or thickening of the zone (EÇb), and a boundary-parallel component V//, leading to simple
shearing (gÇ). The biaxial stretchings of the boundaries are EÇa and EÇc. x1x2x3 is the reference frame used to describe the
¯ow. The shear direction makes an angle f with respect to EÇa or X1. W stands for vorticity and VNS for vorticity-normal
section. (c) The ®nal con®guration resulting from an orthorhombic (coaxial) path. (d) The ®nal con®guration resulting
from a monoclinic non-coaxial path (f = 0). Other monoclinic situations (not shown) are f = 908 and EÇa=EÇc. See text

for details.
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constrained to be parallel to the zone boundaries and

this reduces the number of characterizing parameters

to ®ve.

L can be decomposed into a stretching tensor D and

a vorticity tensor W according to D = 1/2(L + LT)

and W = 1/2(Lÿ LT). The intensity of stretching

(Truesdell and Toupin, 1960, p. 349) of the ¯ow can

be described by what is often referred to as the e�ec-

tive shear strain rate, G, in material science literature

(e.g. Frost and Ashby, 1982). G is an invariant of D

de®ned as (Ranalli, 1987):

G � �2DijDij�1=2 � �2�_E2a � _E2c � _E2b � 1=2 _g2��1=2; �6�
where the repeated subscript means summation over

the values 1, 2 and 3 of that subscript.

For subsequent simpler presentation, we de®ne two

additional parameters, a and c to normalize EÇa and EÇ c
with respect to EÇb:

a � ÿ_Ea=_Eb; c � ÿ_Ec=_Eb: �7�
Although EÇa and EÇ c can have any values for all the

equations presented in this paper, to save space, we

only present results for situations where they are of

the same sign, e.g. EÇa�EÇ cr0. Physically this means that

for a thinning zone (EÇb<0) and a thickening zone

(EÇb>0) we have 0RaRc and 0rarc, respectively.

The situations where EÇa and EÇ c have di�erent signs,

which for a thinning zone for instance means that the

boundaries are stretched in one direction but shortened

in the orthogonal direction, are possible near the ends

of high-strain zones, jogs and bends of the zone or

near other geometrical irregularities. Kinematics and

strain results for these situations can be readily calcu-

lated from equations presented in this paper, but the

results are not presented here.

Using a and c and (4), (6) becomes:

G � �2 cos2 Y�a2 � c2 � 1� 1=2 tan2 Y��1=2jE j; �8�
where E = @v/@x2 . Figure 2 shows variation of G (nor-

malized with respect to E) as a function of a, c and Y.

It is seen that G decreases as Y increases, and increases

as a or c approaches zero. The maximum G occurs

when the velocity, v, is perpendicular to the boundary

and either EÇa or EÇ c is zero.
The dilation (volume change rate) of the ¯ow is:

d � _Ea � _Ec � _Eb � _Eb�1ÿ aÿ c�: �9�
Passchier (1990, 1991) de®ned a kinematic dilatancy

number to measure the two-dimensional area change

rate on the vorticity-normal section for monoclinic

¯ows (Passchier, 1997). Similar to Truesdell's kin-

ematic vorticity number (Truesdell, 1953), the dila-

tancy number, Ak, can be reformulated as a measure

of three-dimensional volume change rate by normaliz-

ing d against the intensity of stretching G as in Jiang

(1994b):

Ak � d

�2�_E2a� _E2b � _E2c � 1
2

_g2��12
� 1ÿ aÿ c

�2�a2�c2�1� 1
2 tan

2 Y��12
:

�10�
Ak>0, Ak<0 and Ak=0 represent ¯ow that is diver-

gent (volume increasing), convergent (volume decreas-

ing) and isochoric (constant volume), respectively

(Jiang, 1994b). Figure 3 shows Ak as a function of a, c

and Y for a + c = 0.8 and a + c = 1.2. For the same

material and same accommodating deformation,

Y4 0 will result in faster volume change than

Y4 90. For bulk simple shear deformation (Y = 90),

the deformation is isochoric.

Similarly, Truesdell's kinematic vorticity number of

¯ow Wk is: (Fig. 4)

Wk � _g

�2�_E2a� _E2b � _E2c � 1
2

_g2��12
� tanY

�2�a2�c2�1� 1
2 tan

2 Y��12
:

�11�
Truesdell de®ned the kinematic vorticity number in

order to measure the degree of rotation of a ¯ow. The

limitation of this (frame dependence) is discussed in

Astarita (1979) and Means et al. (1980).

The sectional kinematic vorticity number, Ws
k,

(Passchier, 1988, 1990, 1991; Robin and Cruden, 1994)

on the vorticity-normal section (VNS) is obtained with

a Mohr circle construction (Fig. 5):

Fig. 2. The e�ective shear strain rate (intensity of stretching), G, nor-
malized with respect to the velocity gradient E as a function of Y, a
and c for isochoric (top), volume decrease (middle) and volume

increase (bottom) situations. See text for details.
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Fig. 3. The kinematic dilatancy number Ak as a function of Y, a and
c for volume increase (top) and volume decrease (bottom) situations. Fig. 4. Truesdell's kinematic vorticity number as a function of Y, a

and c for isochoric (top), volume decrease (middle) and volume
increase (bottom) situations.

Fig. 5. Mohr circle construction for the sectional kinematic vorticity number Ws
k on the VNS. (a) Geometrical relation-

ship between the vorticity vector, W, VNS (shaded) and shear direction. (b) Mohr circle for the ¯ow in a general high-
strain zone. The two-dimensional ¯ow on the x1x3 plane (Fig. 1) is represented by the circle MNR centered on the hori-
zontal axis, OR=EÇa and OM=EÇc. The material line instantaneously parallel to the shear direction is plotted at N on
circle MNR. Therefore stretching along it is represented by OP on the horizontal axis, where NP is perpendicular to the
horizontal axis. The stretching of the material line instantaneously normal to the zone boundary is OT=EÇb (recall that EÇb
has opposite sign to EÇa and EÇc). This, together with the shearing gÇ , gives a point Q (EÇ , gÇ ). PQ is a diameter of the Mohr
circle for the two-dimensional ¯ow on the VNS. From this circle W s

k can be readily obtained by Ws
k=cos a. It is seen

that as f varies from 08 to 908, the Mohr circle for the ¯ow on the VNS varies within the shaded area. C0, Cf and C90

are centers of the Mohr circles for f = 08, 08< f < 908 and f= 908 respectively. W s
k reaches a maximum when

f = 08 and a minimum when f= 908.
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W s
k �

_g

� _g2 � �_Ea cos2 f� _Ec sin
2 fÿ _Eb�2�12

� tanY

�tan2 Y� �1� a cos2 f� c sin2 f�2�12
: �12�

Figure 6 shows Ws
k as a function of Y, a and f for

isochoric ¯ow (a + c = 1), (Fig. 6a), and examples of
convergent (a + c = 0.8) (Fig. 6b) and divergent
(a + c = 1.2) (Fig. 6c) ¯ow situations.
The physical signi®cance of Ws

k is easily understood
for steady monoclinic ¯ows where the VNS is attached
to a single material plane throughout deformation.
The VNS is where the maximum asymmetry of the
fabric is to be observed, whether the fabric records a
®nite deformation or instantaneous deformation. For
triclinic ¯ows, a material plane coincident with the
VNS at an instant will immediately rotate away from
it as deformation advances. Thus the section of a rock
sample on which maximum asymmetry is observed is
generally not the VNS if the ¯ow is triclinic. A spiral
inclusion trail in a spherical garnet is an exception.
The axis of such a spiral is always perpendicular to the
VNS, irrespective of the symmetry of the ¯ow so long
as the ¯ow is steady. For a fabric that re¯ects an accu-
mulated deformation, as most fabrics do, the corre-
lation of Ws

k with the symmetry of the fabric is not
well understood. In fact as we will show in the follow-
ing (see also Lin et al., 1998), a triclinic ¯ow may pro-

duce an apparent monoclinic structural geometry if

there is a large component of simple shear in the ¯ow.

It has been shown that ®ve independent parameters

are needed to completely characterize the ¯ow of our

model. However, if we are only interested in the kin-

ematic characteristics of the ¯ow (`¯ow geometry' of

Passchier and Trouw, 1996) rather than the actual rate

of deformation, then only four independent parameters

are needed, such as the set: Y, f, a and c. Two ¯ows

identical in the above four parameters are identical in

terms of kinematics, despite possible di�erence in their

rate of deformation (to include the rate, an additional

parameter, any one of E, EÇb or gÇ , is needed). The tem-

poral evolution of these four characteristic parameters

de®nes the kinematic history of a high-strain zone.

FINITE DEFORMATION GEOMETRY

The position gradient tensor

We now present the position gradient tensor F(t) for
the ®nite deformation within a general high-strain
zone in terms of the characterizing parameters (E, Y,
f, a and c). The di�erential equations embedded in (5)
are:

Dx1
Dt
�_Eax1 � _g cosfx2

Dx2
Dt
�_Ebx2 �13�

Dx3
Dt
� _g sinfx2 � _Ecx3:

The solutions to (13) are considered for two situations.
Homogeneous and steady deformations or defor-

mations divisible into homogeneous domains and steady
periods. For a homogeneous and steady deformation,
the strain rates on the right sides of equations (13) are
constants. In such a case, equations (13) can be ana-
lytically integrated (e.g. Je�rey, 1995) to give relation-
ships between the initial coordinates (X1, X2, X3) and
the ®nal coordinates (x1, x2, x3) in the forms of xi=xi
(X1, X2, X3), (i = 1, 2, 3). The position gradient tensor
F(t), whose components are Fij=@xi/@Xj, can be
obtained accordingly as follows:

F�t� �
exp�ÿa � E � t � cos Y� tan Y cos f

1�a �exp�E � t � cosY� ÿ exp�ÿa � E � t � cosY�� 0

0 exp�E � t � cosY� 0

0 tan Y sin f
1�c �exp�E � t � cosY� ÿ exp�ÿc � E � t � cosY�� exp�ÿc � E � t � cosY�

0BB@
1CCA �14a�

�Y 6� 90��;

or:

F�t� �
1 E � t � cosf 0
0 1 0
0 E � t � sinf 1

0@ 1A �Y � 90��: �14b�

As a function of E, Y, f, a, c and t, F can be written

as F(E, Y, f, a, c, t). Suppose a natural heterogeneous

and non-steady deformation is divisible into a number

of homogeneous domains. In each domain, the defor-

mation is divided into n time intervals, within each the

deformation being steady. The ®rst incremental defor-

mation accumulated during the time span 00 t1 is:

F0
1=F(E1, Y1, f1, a1, c1, t1), and the incremental defor-

mation for the time period ti ÿ 10ti can be generally

written as:
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Fiÿ1
i � F�Ei;Yi;fi; ai; ci; ti ÿ tiÿ1�; �15�

where the superscript and subscript represent the end
and the starting con®gurations, respectively, during
each time interval. The total accumulated ®nite defor-
mation is then determined by tensor multiplication
(e.g. Elliott, 1972), i.e.:

F � Fnÿ1
n � Fnÿ2

nÿ1 � Fnÿ3
nÿ2 � . . . � F0

1: �16�

Flow as a function of time can be approximated by
analytical expressions. When ¯ow varies with time,
analytical integration of equation (13) is generally im-
possible. However, F can be obtained numerically. Nu-
merical integration can be carried out in various ways.
If ¯ow variation, which can be represented by the vari-
ation of the ®ve characterizing parameters, can be ap-
proximated by analytical expressions, the Runge±
Kutta±Gill method is the obvious choice. If ¯ow vari-
ation can only be expressed numerically and it is not
possible to choose constant time intervals for inte-
gration, other methods must be used.
If F(t) at time nDt is written as Fn, F can be

obtained by the following circulation (McKenzie, 1979;
Dutton, 1997):

Fn�1 � Aÿ1BFn �17�
where A and B are tensors whose components are:

Aij �dij ÿ 1=2DtLij;Bij � dij � 1=2DtLij

�d is the Kronecker delta�: �18�
When su�ciently detailed work has been carried out
and the deformation path is well constrained, some
form of analytic curves (e.g. exponential or polynomial
curves) could be used to ®t the observed data of a
natural deformation and then used for numerical inte-
gration. Alternatively, natural variation can be mod-
elled theoretically. For example, White (1994) used an
exponential function to model the increase and
decrease of natural strain rates. Once a heterogeneous
and non-steady ¯ow history is approximated by ana-
lytic expressions, equations (17) and (18) can be used
to determine the ®nite deformation.
Before more complex deformation paths are exam-

ined using equations (14)±(18), the behavior of the
simplest deformational histories needs to be under-
stood. Thus we present results for homogeneous and
steady deformations.

The accumulation of ®nite strain

The ®nite strain can be calculated by taking the
eigenvalues of the `left Cauchy±Green tensor', FFT

(Truesdell and Toupin, 1960). The eigenvalues are the
three principal quadratic elongations l1, l2 and l3
(l1rl2rl3), the squares of the three principal stretches,

whereas the corresponding eigenvectors are the orien-
tations of the principal strain axes in the deformed
state.

Because we are dealing with three-dimensional ®nite
strain, one of Lode's numbers, es, is used to represent
the strain state. It is as de®ned by Nadai (1963):

es �
���������������������������������������������������������������������������
1

3
��e1 ÿ e2�2 � �e2 ÿ e3�2 � �e3 ÿ e1�2�;

r
�19�

where ei=1/2 ln li (i = 1, 2, 3) are the principal natu-
ral strains. Given a velocity gradient across a high-
strain zone, the ®nite strain within the zone, es, ac-
cumulates at di�erent rates depending on Y, f and a
(because es is independent of volume change, it
depends on either a or c not both) (Fig. 7). The ®nite
strain accumulates most e�ciently when Y = 08 (pure
shear), and least e�ciently when Y = 908 (simple
shear). For the same Y, an increase in a will slow
down the rate of accumulation (yellow areas in Fig. 7).
For ¯ows of monoclinic or higher symmetry (Y = 08,
908, and a = c), the rate of accumulation becomes
independent of f (Fig. 7). For triclinic ¯ows, the rate
of accumulation increases as f decreases (Fig. 7). A
decrease in f corresponds to an increase in Ws

k (Fig. 6).

Evolution of the principal strain axes

The orientations of the principal strain axes can be
readily calculated by taking the eigenvectors of the left
Cauchy±Green tensor (Truesdell and Toupin, 1960).
The pattern and time evolution of l1 can be used to
represent the variation across a high-strain zone of
®nite-strain-related lineations, such as those stretching
lineations de®ned by shape fabrics (discussed later).
Similarly the l1±l2 plane can be used to approximate
the ®nite-strain-related foliations and l3 the poles to
the foliations.

Figures 8±11 are lower hemisphere projections show-
ing the evolution with time of the orientation of the
principal ®nite strain axes l1 and l3 for thinning zones
(Figs 8, 9 & 11) and thickening zones (Fig. 10) for var-
ious Y, f, a and c values. Each stereographic diagram
in Figs 8±11 is a composite one with respect to Y. For
any set of parameters, the principal strain axes start
with the instantaneous stretching axes (ISA) (t= 0,
the ®rst symbol) and gradually change orientations as
the ®nite strain increases (indicated by the thick
arrow). Characteristic features of Figs 8±11 can be
summarized as follows.

1. The ®nite strain geometry for thinning zones
(Figs 8±10) and for thickening zones (Fig. 11) exhibits
such a symmetry that statements made for l1 and l3 in
thinning zones are generally true, respectively, for l3
and l1 in thickening zones.

2. For monoclinic deformation paths (Y = 908,
f = 08, 908 or a = c), l1 and l3 plot on the VNS and
as strain increases, l1 approaches the shear direction
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progressively (f = 08, 908 situations in Fig. 8B & 11A,
and the situation of a = c Fig. 9B). For a thinning
zone, the end orientation of l1 is the shear direction
(Fig. 8B, f = 08 and 908, Fig. 9B ). For a thickening
zone, the end orientation of l1 is the extensional ¯ow
apophysis lying on the VNS but makes an angle
(=cosÿ1 Ws

k, Bobyarchick, 1986) with respect to the
shear direction (Fig. 11, f = 08 and 908).
3. For a thinning zone with triclinic symmetry, l1

plots away from the VNS. As strain increases, l1
rotates via a curved path. The end orientations for l1
are the orientation of EÇ c, not the shear direction. The
closer the deformation is to being monoclinic [i.e.
Y4 908 (e.g. Y= 808, 858), f 4 08, 908 a4 c], the
longer (higher strain) path l1 takes to approach the

orientation of EÇ c. As Y4 908, l1 stays close to the
VNS and rotates towards the shear direction at low
and intermediate strains. At higher strains it swings
away from the VNS trace and follows the HSZB trace
toward EÇ c (Figs 8±11, all cases with Y = 858). When
YR458, l1 plots very close to the orientation of EÇ c
throughout the history. If f approaches 08 or 908 in
these situations, the strain geometry becomes not
much di�erent to that resulting from an orthorhombic
deformation path (e.g. Figs 8C & 9A, f = 108,
Y = 458). As a increases, all l1 loci converge on the
VNS until when a = c, all l1 loci plot on the VNS
(Fig. 9A). This is because an increase in a makes the
symmetry closer to being monoclinic. Although l3
never plots exactly on the VNS for triclinic paths,

Fig. 7. Finite strain accumulation with time: Lode's number, es, as a function of Y, a and f for a velocity gradient
E = 10ÿ14 sÿ1 across the zone. Five situations are presented: pure shear (Y = 08), sub-simple shear (Y= 458, 658, 758)
and simple shear (Y= 908). For each situation, the upper limit red line represents a= 0 and the lower limit blue line
represents a = c. The yellow area represents 0 < a < c. es is independent of volume change. The e�ect of varying f is
shown by the vertical bar for each plot. Where a = c or Y = 908, the deformation is monoclinic and is independent of

f as is intuitively obvious.
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unlike l1, it always plots close to the VNS for all

cases.

4. For a thickening zone in a triclinic situation, the

reverse is true: l1 plots very close to the VNS trace

whereas l3 plots away from it. This property can be

used to ®nd the vorticity vector for a thickening zone.

Unlike a thinning zone where the end orientation of l1
is the direction of EÇ c, the extensional apophysis for a

thickening zone is inclined to the boundary. The con-

trasting features between a thinning zone and a

thickening can be used to tell them apart.

5. For situations with EÇa�EÇ cr0, thinning zones pro-

duce oblate strains (K< 1), thickening zones produce

prolate strains (K>1) and constant-thickness zones

produces plane strains (K = 1) (Fig. 12).

6. Volume change has little a�ect on the geometry

(Fig. 8B). In fact, it would be impossible to infer

volume change solely on the basis of strain geometry.

DISCUSSION

Potential applications

There are advantages in taking a general approach
towards high-strain zones. In the uni®ed model, the in-
stantaneous ¯ow is described by a single velocity gradi-
ent tensor (equation 5) and the ®nite deformation for
a homogeneous domain and steady period is described
by a single position gradient tensor (equation 14).
Since the model covers deformation paths ranging
from coaxial to monoclinic non-coaxial to triclinic
non-coaxial, one can potentially use the two tensors to
investigate a very wide range of deformations. The
stretch and rotation history of a material line can
readily be investigated using these tensors. For
example, the stretch history of a material line l1/2(t)
whose initial orientation is represented by a unit vector

Fig. 8. Equal-area lower-hemisphere projection of variation and evolution with progressive deformation of the maximum
(l1) and minimum (l3) principal ®nite strain axes for thinning zones. (A) Correspondence between the movement of a
high-strain zone in real space and the locus of l1 in the stereographic space for both thinning and thickening zones. (B)
Isochoric deformation with a = 0, c = 1 and c vertical. (C) Isochoric deformation with a= 0, c= 1 and c horizontal.
When Y$908 and a$ c, the strain geometry is triclinic, but appears monoclinic as Y4 908. Irrespective of Y, f, a and
c, l3 always plots close to the VNS. Solid square, solid triangle apex up, solid triangle apex down, cross and solid circle
stand for Y= 458, 658, 758, 808 and 858, respectively. VNS = vorticity-normal section. HSZB= high-strain zone

boundary.
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N= (N1, N2, N3) in the reference frame of Fig. 1 is

simply (Truesdell and Toupin, 1960):

l
1
2�t� � ��������������������������������

NjNkFij�t�Fik�t�
p

; �20�
where the repeated subscript means summation over

the values 1, 2 and 3 of that subscript. Using equation

(20), the stretch history for any line can be constructed

in a form such as in ®g. 2.11 of Passchier and Trouw

(1996, p. 18) for any given deformation path.

Similarly, the rotation history of material lines and

planes can also be investigated using the position gra-

dient tensor. We have constructed the material line ro-

tation loci maps for di�erent deformation paths and

have used them to investigate the evolution of the geo-

metry of folds in high-strain zones.

The model can also be used to compare structural

and fabric geometries observed from natural high-

strain zones with the model results presented in this

paper and constraints placed on possible deformation

paths, as in Lin et al. (1998). For example variably
oriented lineations and consistently oriented foliations
in a high-strain zone (Goodwin and Williams, 1996;
Lin et al., 1998) suggests that the zone is thinning,
whereas consistently oriented lineations and variably
oriented foliations suggests a zone is thickening. The
geometrical property that l3 for a thinning zone and
l1 for a thickening zone always plot close to the VNS
whether the deformation path is triclinic or monoclinic
can be used to constrain the vorticity vector for a
high-strain zone. The intersection between the zone
boundary and a ®nite-strain-related foliation in a thin-
ning zone, and the intersection between the zone bound-
ary and the plane normal to lineations in a thickening
zone, approximately de®ne the vorticity vector.

Some conclusions based on monoclinic models need
modi®cation before being applied to general situations.
For example the fact that l1 plots away from the VNS
for triclinic thinning zones clearly shows that the state-
ment that stretching lineations will align with and

Fig. 9. Equal-area lower-hemisphere projection of variation and evolution with progressive deformation of the maximum
(l1) and minimum (l3) principal ®nite strain axes for thinning zones. (A) Isochoric deformation with a = 1/3 and
c = 2/3. (B) Situations where a = c irrespective of volume change. When Y$908 and a$ c, the strain geometry is tri-
clinic, but appears monoclinic as Y4 908. Irrespective of Y, f, a and c, l3 always plots close to the VNS. Symbols are

the same as in Fig. 8.
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therefore indicate the shear direction cannot be ex-
trapolated to general high-strain zones, even if the
lineation represents the principal strain axes.

Nature of lineations and foliations in high-strain zones

Figures 8±11 present the orientation history of the
principal ®nite strain axes. How they relate to linea-
tions and foliations is not a simple subject. It is im-
portant to understand the nature of lineations and
foliations and the mechanisms involved in their for-
mation before interpreting them kinematically. In non-
coaxial deformation there are such complications as
the inability of material lines and surfaces to track
®nite strain axes (Williams et al., 1977; Hobbs et al.,
1982) and the problem of steady state fabrics (Means,
1981). This problem which has been discussed exten-
sively with respect to foliations (Williams, 1976; Hobbs
et al. 1982; Treagus, 1983) is just as acute in the in-
terpretation of lineations. Lineations are commonly
interpreted as representing the maximum principal
strain axis despite a lack of cogent evidence (see how-
ever Goodwin and Williams, 1996). A lineation de®ned
by deformed objects such as ooids in an oolitic lime-
stone or by pebbles in a conglomerate may closely
track the principal strain direction so long as the rheo-
logical contrast is negligible. However, if the deform-
ing objects are grains in, for example, a monomineralic
aggregate then recrystallization may continually restore
the shape of the most deformed grains to a more
equant form. A competition will ensue between the
lineation-producing deformation and the lineation-
annihilating recrystallization resulting in a steady state
lineation (Means, 1981) that will lie at some ®xed
point on an appropriate path in Figs 8±11, somewhere

between the ISA and the principal ®nite strain axes. If
the deformation path is monoclinic the normal to the
steady-state foliation will lie on or normal to the VNS
as do the maximum ISA and the maximum principal
®nite strain axis. The steady-state lineation will either
lie on the VNS or parallel to the vorticity vector
depending on the nature of the ¯ow. In triclinic ¯ow
however, there is no special relationship.

Lineations de®ned by rotated grains with elongate
habit, such as plagioclase crystals in a melt or sillima-
nite crystals in a metamorphic rock are di�erent again.
If their initial orientation distribution is uniform-ran-
dom their preferred orientation may track a principal
axis, but interference between grains and initial pre-
ferred orientation patterns will complicate the picture.
So for example, if there is an initial preferred planar
orientation of the grains they will be unable to track
strain axes but will converge on the extensional ¯ow
apophysis.

Yet another type of lineation found in shear zones is
ridge-in-groove slickenside striae (Means, 1987). This
can be a penetrative fabric element (Lin and Williams,
1992) and it forms parallel to the local shear direction.
Having formed, if the ¯ow is triclinic the lineation
may rotate towards the extensional ¯ow apophysis or,
if the lineation is on a foliation parallel to the zone
boundary (such as the C-plane), it will rotate toward
the maximum stretching direction (EÇc direction) of the
boundaries.

Finally, even though linear elements may track local
kinematic axes they may not re¯ect the bulk defor-
mation path. For example Williams and Vernon (in
press) have shown how a grain shape fabric may be
inclined to the principal strain axes due to grain scale
partitioning of the strain. In their model, shear zone

Fig. 10. Equal-area lower-hemisphere projection of variation and evolution with progressive deformation of the maxi-
mum (l1) and minimum (l3) principal ®nite strain axes for thinning zones where volume changes are involved (a= 0,
c = 1.2 for volume increase; a= 0, c = 0.8 for volume decrease). c is set vertical. When Y$908 and a$c, the strain
geometry is triclinic, but appears monoclinic as Y4 908. Irrespective of Y, f, a and c, l3 always plots close to the VNS.

Symbols are the same as in Fig. 8.
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parallel shear is achieved by sliding on grain bound-
aries and does not in¯uence grain shape. A pure shear
component of strain, which cannot be accommodated
by grain boundary sliding, results in stretching of the
grains parallel to the principal axis for the pure shear
component. This grain scale stretching direction is
inclined to the bulk strain principal stretching direction
by up to 908.

Signi®cance of triclinic deformation paths in nature

At this stage, the question has to be asked: Do we
really need to be concerned with triclinic deformation
paths? In the Introduction we mentioned that bound-
ary conditions favorable to triclinic deformation are
common in nature. On the largest scale, observations
of present plate motions reveal that boundaries are
commonly transpressive (Harland, 1971) and that the
oblique plate velocity vector is heterogeneously accom-
modated as a result of slip partitioning (e.g. Liu et al.,
1995); i.e. the net oblique velocity is partitioned into a
more dip-slip component at the subduction zone plus
an intraplate component in the overriding and under-
riding plates (e.g. Fitch, 1972; DeMets, 1992;
McCa�rey, 1992; Shen-Tu et al., 1995). The intraplate
deformation shows further partitioning (e.g. Gao and
Wallace, 1995). However, a complete partitioning
where the net slip is partitioned into two end members:
pure dip-slip and pure strike slip components, as
argued in e.g. Tiko� and Teyssier (1994), may be rare.

Generally the shear direction is oblique, 08 < f < 908
(e.g. Liu et al., 1995), which, combined with stretching
boundaries, will lead to triclinic deformation paths.
This is likely to be a common situation. On the scale
of a single deformation zone, oblique slip is very com-
mon in natural faults and high-strain zones. Where
these zones have stretching boundaries, it is only for-
tuitous that the shear direction coincides with one of
the principal stretching directions of the boundaries.
Therefore, most of these deformation zones are
expected to follow triclinic deformation paths.

Fabrics that cannot be explained in terms of a single
monoclinic deformation are common. Often they are
interpreted in terms of overprinting, but some of these
fabrics, such as lineations in transcurrent shear zones
that vary between vertical and horizontal (e.g. Lin et
al., 1998), and cleavage transected folds, can also be
interpreted in terms of a single triclinic deformation.
Similarly, the absence of sheath folds in areas where
folds have been signi®cantly rotated, can also be due
to triclinic ¯ow.

Another example of a fabric that cannot be satisfac-
torily explained by monoclinic ¯ow has been presented
by Worley and Wilson (1996). They observe snowball
garnets, rotated during D2/D3, that have a rotation
axis oblique to coeval mineral lineations. They attempt
to interpret the data in terms of monoclinic ¯ow, but
acknowledge the con¯icting nature of the evidence. It
is impossible to reconcile the three-dimensional geome-
try of the garnet inclusion trails with a steady monocli-

Fig. 12. Plots of the shapes of the ®nite strain ellipsoids for thinning and thickening zones with a=0 and c=1 for di�er-
ent f values. Thinning zones produce oblate strains (K<1), thickening zones produce prolate strains (K> 1) and con-
stant-thickness zones produce plane strain (K=1). Plots for thinning zone and thickening zone are symmetric about the
line de®ned by K= 1. Solid square, solid circle, cross and open square represent Y= tanÿ1 (gÇ/EÇ) = tanÿ12, tanÿ14,

tanÿ16 and tanÿ110, respectively.
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nic deformation path. The data is readily explained
however, by triclinic ¯ow. The rotation axis is parallel
to the vorticity vector whereas the lineation is trying
to track the EÇ c direction of the stretching boundary, i.e.
the dip line. Thus we suggest that deformation may
have followed a steady triclinic path and the zone a
sinistral-reverse-thinning-zone.
It is very di�cult to constrain natural deformation

paths (Hudleston and Lan, 1993). Not only can tricli-
nic ¯ow result in monoclinic fabrics especially at large
strains as mentioned above, but not all triclinic fabrics
are a product of triclinic ¯ow. They can result from
oblique superposition of fabric and kinematics, both of
higher symmetry. Further the initial fabric needs not
be a deformation fabric (e.g. oblique interaction of a
cylindrical sedimentary fabric and monoclinic ¯ow can
result in a ®nal triclinic fabric). To establish criteria
for recognizing triclinic deformation paths is di�cult
and unique answers are likely to be rare. However, an
understanding of the characteristics of triclinic ¯ow
should lead to better interpretation of natural fabrics.
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